作为一个动力电池包设计者,你可能属于电池厂家的工程技术部门,也可能是独立的第三方电池包设计公司,还可能是主机厂的员工。如果是后两种情形,你就很有可能遇到题目中的问题,面对一个特定车型的需求,需要选取怎样的电芯加以排列,才能恰到好处的满足车辆的全部工况需求呢?我们先来选对于工作表现最重要的电芯放电性能。
放电特性可以主要的拆分成3个要点来看:放电曲线趋势,放电倍率和脉冲特性。
1 放电曲线趋势
放电特性曲线的趋势,主要关注电芯放电曲线的斜率。不同类型的电芯,基本的放电趋势是不同的。磷酸铁锂,在放电初期电压快速下降以后,电压在相当长的一段时间处于一个平台内,荷电量降低,电压变化很小;三元锂电池,则相对来说,放电期间电压下降速率较高,显示出明显的斜率。如下面三幅图所示。
具有倾斜放电曲线的电池所输送的功率在整个放电周期中逐渐下降。这可能会导致高功率应用在放电后期结束时出现问题。对于需要稳定电源电压的低功率应用,如果斜率太陡,可能需要安装稳压器。这通常不适用于高功率应用,因为稳压器的损耗会消耗电池太多功率。
温度因素影响
电池的放电特性,受到环境温度的影响极为明显。如果车辆的目标销售地区最低温度在0℃以下,在某些含水电解液的电池中,电解液本身可能会冻结;即使有机电解液不会冻结,电池性能下降也非常明显,就需要考虑低温对电池的影响问题。如果是在环境温度极高的环境使用动力电池,电极活性材料在高温下容易与电解液发生反应,可能带来容量上的损失,还可能造成安全风险。
在电池能够承受的温度范围内,电池性能通常随温度的提高而提高,比如容量增大,内阻减小。每种电芯都有一个最适宜的工作温度,最理想情况是给电池创造出这个适宜的工作温度,偏高或者偏低的温度都会影响循环寿命,是已经被很多实验证明了的。不同温度下的放电曲线会发生整体偏移,趋势基本平行或者斜率略微发生变化。
环境温度超出电池合理工作温度范围时,采取相应的热管理或者预热设计,或者选择低温性能好的电芯,比如钛酸锂。而系统参数限值的设置,比如加热启动温度等,也是需要首先参考电池的性能来确定的。
2 放电倍率
动力系统中,对电池放电性能的需求,取决于系统中的负载。不同的系统,对放电倍率的需求不同。纯电动汽车,全部里程都需要电池提供能量,因此放电时间必然比较长,而放电倍率比较低,往往低于1C,适合选用能量型电芯。而像混合动力电动汽车,电池包规模较小,不太可能设计较大的并联数量,电池包容量较小,在需要时要求比较大的倍率放电,这时需要倾向于选择高比功率电芯。
放电倍率对容量的影响
放电倍率大小不同,在选择电池容量时,必须考虑放电倍率对电芯容量的影响,否则,在实际运行中将出现严重偏差。
低功耗消费类电子产品电池通常规定以低于1C倍率放电,而SAE使用20小时(0.05C)的放电量作为测量汽车电池Ah容量的标准条件。下图展示了在相同温度下,不同放电倍率下放出电量的对比关系。锂电池以外的其他类型的电芯,同样有类似现象,比如铅酸电池,倾向比锂电池更明显。
Peukert方程
关于放电倍率与电池容量的关系,有人针对铅酸电池作出过定量的研究。Peukert方程是19世纪末被提出的,表征铅酸电芯放电电流与放电容量关系的一个经验公式,它近似表示电池的可用容量如何根据放电倍率变化
在非常高的连续放电率下,有效电池容量降低。然而,间歇使用时,电池在休眠期间有时间恢复,此时温度也将回到环境水平。由于这种恢复的可能性,如虚线所示,间歇使用电池,则有效容量有所回升,并且放电效率也更高。
这与在连续稳定负载下运行效率最高的内燃机行为相反。从这个角度看,用电池作为电源供电的车辆,解决实际中本来就是断断续续波动频繁额工况,电池电源是更好的解决方案。
Ragone曲线——描述比能量与比功率的关系
一般的,对于能量密度和功率密度,同一种电池很难兼顾,即使有兼顾的比较好的产品,其成本也是商业化产品很难承受的,于是我们需要在能量密度和功率密度的选择上做出权衡,选出最为复合我们需求的电池。于是有人设计了一种展示方式,用以表达不同电池之间能量密度和功率密度的相对关系。Ragone图,横轴是功率密度,纵轴是能量密度。Ragone图通常基于对数坐标。
从下面的图示中可以看出,传统锂电池能量密度比较高,当功率达到一个临界值以后,随着功率的增加,能量密度迅速下降。具有钛酸锂阳极(Altairnano)的锂离子电池提供非常高的功率密度,但能量密度却在100以下。
3 脉冲性能
输送高电流脉冲的能力是许多电池的要求。电池的载流量取决于电极的有效表面积。但是电流限制是由电池内发生化学反应的速率决定的。化学反应或“电荷转移”发生在电极表面上,载流能力随着靠近电极的化学物质转化进程而不同,初始速率可能非常高。但是,一旦电流上升,反应速率就会受到扩散速率的限制,这里的扩散指电极表面活性化学物质需要通过电解质扩散来补充的过程。脉冲电流因此可以明显高于标称的连续电流放电倍率。
因此,通过实验数据,详细了解电芯的脉冲能力,能够很好的扩大电池的功率适用范围,反过来说,你在选择电芯时,对比功率的一部分要求,可以落实到电池的脉冲能力上来。
车辆行驶工况
考虑电池包性能与车辆需求的匹配时,我们一般选取车辆的额定功率和峰值功率两个重点参数纳入考量。而车辆实际运行中的工况需求,却远远不是这样简单。这种偏差是造成设计里程与实际里程出现差异的一个原因。据此的改进做法,如果可以获得一个地区一种车型的典型工况,根据工况中的实际消耗功率与里程的关系,将能量消耗对时间积分,则可以获得更加精准可靠的里程估计结果。更加具体的考虑工况对电池放电能力的需求,也就能够更好的利用电池的短时脉冲能力。